محاسبه عددی انتگرال ها با استفاده از بسط موجک

پایان نامه
چکیده

انتگرال گیری از یک تابع روی یک بازه کراندار یا روی یک ناحیه معین برای بسیاری از مسائل فیزیک عملکرد مهمی دارد. چندین روش برای انتگرال گیری عددی از یک تابع وجود دارد. در سال های اخیر، موجک ها به خاطر پایایی و موثر بودن بیشترین اهمیت را پیدا کرده اند. در این روش، موجک ها برا ی تقریب یک تابع روی یک بازه متناهی بکار می روند. موجک ها توابع پایه ای هستند که در شرایط معینی صدق می کنند موجک های بسیاری با ویژگی های مختلف وجود دارد بطور مثال موجک های هار، موجک های متعامد دابیشز با محمل فشرده و موجک های میر، موجک های دابیشز بیشترین اهمیت را دارند چون آنها دارای محمل فشرده روی بازه می باشند که پارامتر عدد موجک یا عدد دابیشز نامیده می شود. در این پایان نامه ما موجک های دابیشز را بکار می بریم و یک روش برای تقریب انتگرال معین و همچنین انتگرال دوگانه با استفاده از موجک ها شرح داده خواهد شد این تقریب به بسط توابع مقیاس روی تابع انتگرال گیری بستگی دارد.

منابع مشابه

انتگرال گیری عددی با استفاده از موجک ها

موجک ها توابعی هستند که داده ها را در قسمت های مختلف یک فرکانس بسط می دهند. به این ترتیب هر مولفه از فرکانس را می توان براساس مقیاس دلخواهی مورد مطالعه قرار داد.علاوه بر این در بررسی فرکانس های ناپیوسته وتیز نسبت به روش فوریه مزیت های زیادی دارند. موجک ها در علوم مختلفی همچون فیزیک، زلزله شناسی، لرزه نگاری، الکترونیک، بررسی بیماریهای منتشر، الکتروکاردیوگرافی،الکترو آنسفالوگرافی، رادیولوژی، پردا...

حل عددی معادلات انتگرال با استفاده از موجک های هار

در این ‏رساله یک روش محاسباتی برای حل معادلات انتگرال فردهلم- ولترا و معادلات انتگرال-دیفرانسیل و رده ای از معادلات انتگرال دوبعدی ولترای غیر خطی معرفی نموده ایم. از موجک های هار به عنوان توابع پا?ه ای در تقر?ب جواب معاد?ت انتگرال استفاده می کنیم. برای این منظور با معرفی یک عملگر مناسب جوابهای تقریبی را به دست می آوریم. با استفاده از قضیه نقطه ثابت نشان می دهیم که تحت شرایط مشخص این عملگر دارای...

‏به‌کارگیری موجک چبیشف‏ نوع دوم در حل عددی معادلات انتگرال فردهلم خطی فازی نوع دوم

در این مقاله‏، حل عددی معادلات انتگرال فردهلم فازی نوع دو‏م با به‌کارگیری موجک چبیشف‏ نوع دوم را مورد بررسی قرار می‌دهیم. پس از بیان تعاریف مقدماتی مرتبط با معادلات فازی و نیز ویژگی‌های اولیه موجک چبیشف‏ نوع دوم‏، فرم پارامتری معادلات انتگرال فردهلم فازی نوع دو‏م‏، که در واقع دستگاهی از معادلات انتگرال فردهلم خطی در حالت غیرفازی است را معرفی می‌نماییم. سپس با به‌کارگیری موجک چبیشف‏ نوع دوم و به...

متن کامل

انتگرال گیری عددی با استفاده از شبه-درونیاب اسپلاین

در این مقاله روش انتگرال گیری عددی شبه درونیاب اسپلاین برای بدست آوردن جواب تقریبی انتگرال های معین تک گانه و دو گانه بحث خواهد شد. برای نشان دادن دقت و کارایی روش ارائه شده، روش برای چند مثال بکار برده شده است.

متن کامل

روش های انتگرال گیری عددی با استفاده از موجک ها و بررسی خطای آنها

در این پایان نامه، تکنیک های مختلف انتگرال گیری عددی را برای محاسب? انتگرال های به شکل int_0^xf(t)phi(t)dt به کار می بریم، که در آن ‎?‎ تابع مقیاس دابیشز است. در حالتی که تابع ‎f‎ یک چندجمله ای باشد، انتگرال بالا را با حل دستگاه معادلات خطی در نقاط صحیح ‎x‎ و سپس با استفاده از رابط? بازگشتی که به دست می آوریم، در نقاط دوتایی x‎ نیز محاسبه می کنیم. بعلاوه در حالت کلی، این انتگرال ها را با اس...

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه تربیت دبیر شهید رجایی - دانشکده علوم انسانی و تربیت بدنی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023